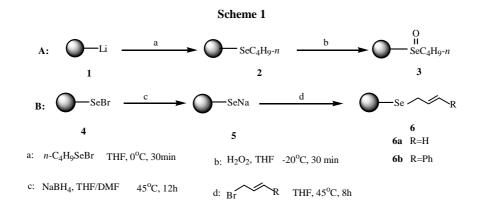
Polystyrene-supported Selenides and Selenoxide: Versatile Routes to Synthesize Allylic Alcohols

Wei Ming XU¹, You Chu ZHANG², Xian HUANG¹*

¹Department of Chemistry, Zhejiang University (Xixi Campus), Hangzhou 310028 ²Department of Chemistry, Shaoxing College of Arts and Sciences, Shaoxing 312000

Abstract: Several polystyrene-supported selenides and selenoxide have been prepared firstly. These novel reagents were treated with LDA to produce selenium stabilized carbanions, which reacted with aldehydes and alkyl halides, followed by selenoxide *syn*-elimination and [2,3] signatropic rearrangement respectively to give Z-allylic alcohols stereoselectively.


Keywords: Solid phase synthesis, selenides and selenoxide , allylic alcohol.

Combinatorial chemistry and solid phase synthesis have recently emerged as powerful tools for the drug discovery process¹. It might be argued that selenoxide *syn*-elimination provided the principal impetus for the development of organoselenium chemistry. [2, 3] Sigmatropic rearrangement² of allylic selenium compounds is the most fundamental reaction in the field of synthetic organoselenium chemistry as well as selenoxide *syn*-elimination. However, organic selenides are highly malodorous and generally unpleasant and difficult to handle, especially because of their toxicity. Several groups³ have developed some organoselenium resins to solve this problem. Recently, our research group has been interested in the application of organic selenium resins in organic synthesis^{4,5}. Being the materials of Sharpless-AE reaction⁶, allylic alcohols are also important intermediates in organic synthesis. We report here several novel preparations of polystyrene-supported selenides and selenoxide and their applications for highly stereocontrolled synthesis of kinds of *Z*-allylic alcohols⁵ with significant advantages of easy operation, free from odors, and good purities of the products.

The preparation of polystyrene-supported selenides and selenoxide is described in **Scheme 1**.

Resin **3** and resin **6** reacted smoothly with LDA followed by substitution with aldehydes and alkyl halides to give resin **7** and resin **10** (**Scheme 2**), which followed by selenoxide *syn*-elimination and [2, 3] sigmatropic rearrangement respectively to give the same type of products-*Z*-allylic alcohols stereoselectively⁷. The results are summarized in **Table 1**. All the resins used could be regenerated and reused⁵.

^{*}E-mail: huangx@mail.hz.zj.cn

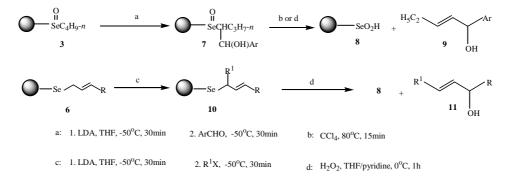


 Table 1
 Yields and purities of allylic alcohols

Products	Resins	Substrates	Yields (%) ^a	Purities (%) ^b
9a	3	PhCHO	88	93
9b	3	p-CH ₃ -PhCHO	86	92
9c°	3	PhCHO	85	91
11 a	6a	PhCH ₂ Br	81	94
11b	6b	CH ₃ CH ₂ Br	84	90
11c	6b	PhCH ₂ Br	86	92
11d ^c	6a	PhCH ₂ Br	80	91

a: Yields of products based on the loading of the resin, the products were identified by ¹H NMR, MS and IR spectra. b: Determined by ¹H NMR (400MHz). c: Using regenerated resin.

In summary, we have developed several novel methods to prepare polystyrenesupported selenides and selenoxide. They reacted with LDA then aldehydes and alkyl halides, followed by selenoxide *syn*-elimination and [2,3] sigmatropic rearrangement, to provide Z-allylic alcohols stereoselectively. These novel polystyrene-supported reagents can be regenerated and reused.

Polystyrene-supported Selenides and Selenoxide: Versatile Routes to 799 Synthesize Allylic Alcohols

Acknowledgment

Project 29932020 was supported by the National Natural Science Foundation of China.

References

- 1. (a) R. E. Sammelson, M. J. Kurth, *Chem. Rev.*, **2001**, 137. (b) R. E. Dolle, *J. Comb. Chem.*, **2001**, *3*, (6), 1.
- 2. Y. Nishibayashi, and S. Uemura, *Organoselenium Chemistry*, T. G. Back ed., Oxford University Press, Oxford, **1999**, *Chapter 11*.
- 3. (a) K. C. Nicolaou, J. Pastor, S. Barluenga, N. Winssinger, *Chem. Commun.*, **1998**, 1947. (b) R. Michels, M. Kato, W. Heitz, *Makromol. Chem.*, **1976**, *177*, 2311.
- (a) H. Qian, X. Huang, Synlett., 2001, 10, 1571. (b) H. Qian, X. Huang, Synlett., 2001, 12, 1913. (c) X. Huang, S. R. Sheng, Tetrahedron Lett., 2001, 42, 9035. (d) H. Qian, X. Huang, Tetrahedron Lett., 2002, 43, 1063.
- 5. X. Huang, W. M. Xu, *Tetrahedron Lett.*, **2002**, *43*, 5495.
- 6. T. Katsuki, K. B. Sharpless, J. Am. Chem. Soc., 1980, 102, 5974.
- 7. The spectral data of the compounds **9a**, **9b**, **11a**, **11b** were deposited in the editorial department of CCL.

Received 8 October, 2002